Mark Scheme (Results)

October 2017

Pearson Edexcel International Advanced Level
In Biology (WBIO2) Paper 01
Development, Plants and the Environment

edexcel 쁯

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2017
Publications Code WBIO2_01_1710_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer	Additional guidance	Mark
1(a)	polysaccharide ; a glucose ; (1,4- and/or 1,6-) glycosidic ; amyloplasts ;	ACCEPT carbohydrate / polymer NOT beta glucose ACCEPT chloroplasts	(4)
Question Number	Answer	Additional guidance	Mark
1(b)	1. reference to microfibrils ; 2. hydrogen bonds hold cellulose \{molecules / chains /eq\} together ; 3. criss cross arrangement of \{cellulose / microfibrils\} / eq ; 4. in (matrix of) \{pectin / pectate / hemicellulose\};	IGNORE fibrils / microfibres NOT myofibrils 3.ACCEPT network / mesh of microbrils	(3)

Question Number	Answer	Additional guidance	Mark
2(a)(ii)		ACCEPT in equivalent positions in other vascular bundles ACCEPT multiple label lines if all are correct	(1)

Question Number	Answer	Additional guidance	Mark
2(b)	1. (both) have \{cellulose / microfibrils\} ;	2. (both) have secondary thickening ; 2. ACCEPT secondary walls	
	4. (both) contain lignin ; 3. ACCEPT "they are lignified" contain pits ;		
	5. (both) are composed of dead cells ;		
6. (both) are \{hollow / have no cytoplasm / eq\} ;			

Question Number	Answer	Additional guidance	Mark
2(c)	1. (group of) cells ;		

Question Number	Answer	Mark
$\mathbf{3 (a) (\mathbf { i })}$	3(a)(i). The only correct answer is C \boldsymbol{A} is not correct because the cell membrane, mitochondria ,nucleus and ribosomes are all found in both plant and animal cells \boldsymbol{B} is not correct because the cell membrane, mitochondria ,nucleus and ribosomes are all found in both plant and animal cells \boldsymbol{D} is not correct because the cell wall is found only in plant cells	

Question Number	Answer	Mark	
$\mathbf{3 (a) (i i)}$	$\mathbf{3 (a) (i i) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ A ~}$		
	\boldsymbol{B} is not correct because the cell wall is the only structure found in plant cells but not animal cells		
	C is not correct because the cell wall is the only structure found in plant cells but not animal cells D is not correct because the cell wall is the only structure found in plant cells but not animal cells		(1)

Question Number	Answer	Mark
$\mathbf{3 (a) (i i i) ~}$	3(a)(iii). The only correct answer is A	
	\boldsymbol{B} is not correct because all of the structures listed are found in both animal and plant cells	
	\boldsymbol{C} is not correct because all of the structures listed are found in both animal and plant cells	
	\boldsymbol{D} is not correct because all of the structures listed are found in both animal and plant cells	(1)

Question Number	Answer	Mark	
$\mathbf{3 (a) (i v) ~}$	3(a)(iv). The only correct answer is C A is not correct because the only structures found in all three types of cell are the cell membrane and ribosomes	B is not correct because the only structures found in all three types of cell are the cell membrane and ribosomes D is not correct because the only structures found in all three types of cell are the cell membrane and ribosomes	(1)

Question	Answer	Additional guidance	Mark
Number	3(b)(i)	molecular phylogeny ;	ACCEPT phonetic spellings

Question Number	Answer	Mark
$\mathbf{3 (b) (i i)}$	$\mathbf{3 (b) (i i) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ B ~}$	
	\boldsymbol{A} is not correct as they do not show species F and G as being more closely related	
	\boldsymbol{C} is not correct as they do not show species F and G as being more closely related	
\boldsymbol{D} is not correct as they do not show species F and G as being more closely related	(1)	

Question Number	Answer	Additional guidance	Mark
4(a)(i)	1. they have \{different number of / between 1 and 3 / eq \} mitochondria ;	IGNORE comments about one cell (eg cell 1 has the largest mitochondrion / cell 2 has most mitochondria)	
2. they have different \{sizes / volumes\} of mitochondria ; 3. idea that total volumes of mitochondria are similar ;	Must refer to total / combined volume		

Question Number	Answer	Additional guidance	Mark
4(a)(ii)	1. only three yeast cells used / eq ; 2. looking at the whole of a yeast cell is difficult / the number of mitochondria may have been mis-counted / eq ; 3. idea that measuring the volume of a mitochondrion accurately is difficult ;	1.ACCEPT too few / not enough cells were measured 1.ACCEPT small sample size	

Question Number	Answer	Additional guidance	Mark
4(b)(i)	1. (volume of section $=$) $11 \times 0.09 / 0.99 ;$ 2. (number of sections in one cell $=$) $13.5 \div 0.99 /$ $13.636 ;$	Correct answer alone gains three marks	
	3. (number of ribosomes per cell $/ \times 20200=) 275454 /$ $275455 ;$ 2. $13.5 \div 11 / 1.23 ;$ 2. $275454 / 275455 ;$	3.DO NOT ACCEPT decimal places in final answer	

Question Number	Answer	Additional guidance	Mark
4(b)(ii)	1. idea that counting ribosomes is difficult as they are small ;	2. ribosomes may be unevenly distributed / section used is not representative ;	2.idea that ribosomes may be hidden behind other structures ; measured 4. idea that measurements of a section may not be accurate ; 5. idea that a (yeast) cell is not a regular shape ; was

Question Number	Answer	Additional guidance	Mark
4(b)(iii)	1. protein synthesis / translation ; 2. to fold the protein / eq ; 3. protein transport /eq ; 4. to package the protein into vesicles ;	1. ACCEPT references to protein synthesis in ribosomes (on rough ER)	
2.ACCEPT formation of secondary /			
tertiary structure			
3. ACCEPT to isolate protein from			
rest of cytoplasm			

\hline\end{array}\right.\)

Question Number	Answer	Additional guidance	Mark
4(c)	Eukaryota contain \{(rough) endoplasmic reticulum / mitochondria / membrane bound organelles\} ;	ACCEPT Eukarya	

Question Number	Answer	Additional guidance	Mark
$\mathbf{5 (a) (\mathbf { i) }}$	idea of characteristics (of an organism) ;	ACCEPT traits / features / eq ACCEPT physical / external appearance	(1)

Question Number	Answer	Additional guidance	Mark
$\mathbf{5 (a) (\text { (ii) }}$	alleles (present in an organism) ;		(1)

Question Number	Answer	Additional guidance	Mark
5(a)(iii)	1. biotic and abiotic factors / eq ;		
	2. in a habitat / eq ;	ACCEPT surroundings / ecosytem	(2)

Question Number	Answer	Additional guidance	Mark
$\mathbf{5 (b) (i)}$	1. increase in temperature decreases the number of facets in wild type and ultra bar but increases number of facets in infra bar / eq ;	1.Piece together answer if necessary	
	2. decrease in number of facets in wild type (as temperature increases) is greater than in ultra bar ;	2. ACCEPT decrease in number of facets in ultra bar (as temperature increases) is less than in wild type	
	3. credit comparative use of figures;	3.ACCEPT the following values a decrease of $260 / 26 \%$ facets in wild type, a decrease of $130 / 68 \%$ in ultra bar, an increase of $110 / 65 \%$ in infra bar	(2)

Question Number	Answer	Additional guidance	Mark
$\mathbf{5 (b) (i i)}$	1. idea that if only \{environment / temperature\} affected phenotype then there would be no difference between the types of fruit fly ;	2. idea that if only genotype affected phenotype then the number of facets would be the same at all temperatures;	(2)

Question Number	Answer	Additional guidance	Mark
5(b)(iii)	1. homologous chromosomes \{pair up / eq\} ; 2. \{chromatids from a pair of chromosomes / non-sister chromatids\} overlap ;	1.ACCEPT there are pairs of homologous chromosomes	
3. reference to \{chiasma / chiasmata\} ; 4. break in \{chromatid / DNA (molecule)\} ;	5. $\{$ recombination / eq\} of \{chromatids / DNA / alleles\} ; DNA/alleles/genetic material/section of chromatid 5. DO NOT ACCEPT genes / chromosomes		(3)

Question Number	Answer	Additional guidance	Mark
$\mathbf{6 (a)}$	1. acidic treatment decreases (tensile) strength ;	IGNORE any comments about bagasse	
	2. alkali treatment and heat treatment increase (tensile) strength;	2.Piece together answer if necessary 3. credit correct manipulation of figures ;	3. e.g. heat treatment increases tensile strength by 270 MPa Units are required

Question Number	Answer	Additional guidance	Mark
$\mathbf{6 (b)}$	1. alkali treatment increases (tensile) strength in bananas but decreases it in bagasse ; 2. acidic treatment decreases (tensile) strength in both; 3. heat treatment increases (tensile) strength in both;	Piece together answer if necessary ACCEPT stronger and weaker as eq to increases and decreases IGNORE any quantities quoted	

Question Number	Answer	Additional guidance	Mark
*6(c)	QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence. 1. description of extracting fibres; 2. idea of treating the banana fibres and bagasse with all (three) treatments and using untreated fibres as a control ; 3. idea of standardising treatment; 4. credit relevant control variable; 5. description of apparatus set up to be used; 6. idea of hanging masses (gradually) ; 7. idea of recording heaviest mass that does not break the fibre ; 8. idea of repeating to calculate a mean ;	QWC - Emphasis is on logical sequence 1. eg soaking in water / reference to retting 2. Piece together answer if necessary 3. e.g. same time, same concentration / volume of chemicals (not amount) 4.ACCEPT length / width / crosssectional area / diameter of fibre / temperature / humidity 5.ACCEPT e.g. clamping fibres between two stands / suspending fibre from forcemeter/spring balance /clamp or using a pulley 7. ACCEPT record the mass when the fibre breaks	(5)

Question Number	Answer	Additional guidance	Mark		
$\mathbf{6 (d)}$	1. idea that \{they are a renewable resource / they can be regrown\} ;	2. ACCEPT they will not run out		\quad	2. resource will be available to future generations ;
:---					
3. idea of replacing the use of \{non-renewable / more valuable / eq\} materials ;					

Question Number	Answer	Additional guidance	Mark
$\mathbf{7 (a) (i)}$	1. $\{$ number / variety / range\} of species in an area ;	1.ACCEPT habitat/ecosystem /region 1.NOT organisms	
	2. $\{13 /$ minimum of 13$\}$ finches in Galapagos;	"number of species of finches in the Galapagos" gains mp1 and 2	(2)

Question Number	Answer	Additional guidance	Mark
7(a)(ii)	1. species found in \{one / a small\} area / eq ;	1.IGNORE organisms 1.IGNORE habitat	
	2. (these) finches found only in Galapagos;	"finches can only be found in Galapagos islands" gains mp1 and 2	(2)

Question Number	Answer	Additional guidance	Mark
$\mathbf{7 (a) (\text { iii })}$	1. role of \{a species / an organism\} in its \{habitat / community /environment eq\}; 2. credit role of finches;	e.g. provide food for predator, seed dispersal, feed on seeds;	(2)

Question Number	Answer	Additional guidance	Mark
*7b	QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence. 1. selection pressure is lack of \{food / seeds\} ; 2. finches that have a more powerful beak can \{survive / feed on the seeds ; 3. a powerful beak (shape) is due to a mutation; 4. idea that finches with \{advantageous / eq\} alleles (survive) to breed ; 5. \{advantageous / eq\} alleles passed onto offspring ; 6. idea that the allele frequency for powerful beak shape will increase ; 7. idea that an increase in more powerful beaks with time is evolution ; 8. idea that a change in an environmental condition changing \{phenotype / allele frequency\} is natural selection ;	QWC - Emphasis is on clarity of expression ACCEPT longer / deeper beak as eq to more powerful beak throughout 1.ACCEPT decrease of seeds harder seeds 2.ACCEPT finches that have a less powerful beak \{do not survive / cannot feed on the seeds\} 6.IGNORE allele frequency will change	(6)

Question Number	Answer	Additional guidance	Mark
$\mathbf{8 (a)}$	$30 /$ thirty／thirty chromosomes ；	ACCEPT phonetic spellings	（1）

Question Number	Answer	Additional guidance	Mark
$\mathbf{8 (b)}$	1．idea that sexual reproduction results in genetic variation ；	2．so more likely some hydra will survive ； 3．idea that asexual reproduction will produce genetically meiosis／crossing identical hydra ；random assortment 1．ACCEPT maintains genetic variation	
4．idea that these hydra will be suited to the existing conditions ； 5．idea that the number of hydra will increase more rapidly ；	（4）		

Question Number	Answer					Additional guidance	Mark
8（c）（i）							（3）
	Stage of mitosis	0	15	30	60		
	Number of chromosomes in prophase	区	囚	X	区		
	Number of chromatids in metaphase	区	区	区	X		
	Number of chromatids in telophase	X	区	区	区		

Question Number	Answer	Additional guidance	Mark
8(c)(ii)	1. idea that one cell divides (into two cells) ; 2. by \{cleavage / division of cytoplasm / eq\} ; 3. cell growth occurs / eq ; 4.organelle \}; 5. reference to \{RNA / protein\} synthesis; 6. idea of respiration releasing \{energy / ATP\}; formation\} of \{organelles / named formed	2.ACCEPT description of membrane pinching off / infolding / eq	

